
” The
good
paper,

s such

http://

t’s

ray at
ord
y

 of
n 50
ften

ed
A 10-MINUTE DESCRIPTION OF HOW JUDY WORKS
AND WHY IT IS SO FAST

By Doug Baskins, doug@fc.hp.com
October 16, 2001

As the inventor of the Judy algorithm I’ve been asked repeatedly, “What makes Judy so fast?
answer is not simple, but finally I can share some of the details. Let’s see if I can give you a
understanding in 10 minutes. (The Judy data structures are very well described in another 
theJudy Shop Manual, but it took me about three hours to read!)

A Judy tree is generally faster than and uses less memory than contemporary forms of tree
as binary (AVL) trees, b-trees, and skip-lists. When used in the “Judy Scalable Hashing”
configuration, Judy is generally faster then a hashing method at all populations. (See also 
www.hp.com/go/judy: information library: application notes: scalable hashing)

Expanse, population, anddensityare not commonly used terms in tree search literature, so le
define them here:

• Expanse is a range of possible keys, such as: 256..511

• Population is the count of keys contained in an expanse, such as, 260, 499, 500 = 3.

• Density is used to describe the sparseness of an expanse of keys; density = population /
expanse. A density of 1.0 means that all possible keys are set or valid in that expanse.

Node andbranch are used interchangeably in this document.

Key andindex are used interchangeably. A Judy tree is thought of as an unbounded Judy ar
the API level. The expanse of JudyL or Judy1 arrays are bounded by the expanse of the w
(32[64]-bits) used for the index/key. A JudySL array is only bounded by the length of the ke
string that can be stored in the machine.

A (CPU)cache-line fill is additional time required to do a read reference from RAM, when a
word is not found in cache. In today’s computers the time for a cache-line fill is in the range
50..200 machine instructions. Therefore a cache-line fill should be avoided when fewer tha
instructions can do the same job. (Modern machines tend to pipeline writes to RAM. They o
take no additional time in the Judy design.)

Some of the reasons Judy outperforms binary trees, b-trees, and skip-lists:

• Judy rarely compromises speed/space performance for simplicity (Judy will never be call
simple except at the API).



ia for

s.

ainder

e N
 solve

e

e 3
stly
reduced

ed a
f the

dening
ved

ible

 a
s
lls per

e hash
no help
use

le
m/go/
• Judy is designed to avoid cache-line fills wherever possible. (This is the main design criter
Judy.)

• A b-tree requires a search of each node (branch), resulting in more cache-line fills.

• A binary-tree has many more levels (about 8X), resulting in more cache-line fills.

• A skip-list is roughly equivalent to a degree-4 (4-ary) tree, resulting in more cache-line fill

• An “expanse”-based digital tree (of which Judy is a variation) never needs balancing as it
grows.

• A portion (8 bits) of the key is used to subdivide an expanse into sub-trees. Only the rem
of the key need exist in the sub-trees, if at all, resulting in key compression.

The Achilles heel of a simple digital tree is very poor memory utilization, especially when th
in N-ary (the degree or fanout of each branch) increases. The Judy tree design was able to
this problem. In fact a Judy tree is more memory-efficient than almost any other competitiv
structure (including a simple linked list). A highly populated linear array[] is the notable
exception.

From a speed point of view Judy is chiefly a 256-ary digital tree or trie (per D. Knuth Volum
definitions). A degree of 256-ary is a somewhat “magic” N-ary for a variety of reasons -- mo
because a byte (the least addressable memory unit) is 8 bits. Also a higher degree means 
cache-line fills per access. You see the theme here -- avoid cache-line fills like the plague.

It is interesting to note that an early version of Judy used branch widening (sometimes call
level-compressed tree). Branch widening opportunities occur primarily in the upper level(s) o
tree. Since a tree is a hierarchy, the upper branches are likely to be in cache, thus branch wi
did not significantly reduce the number of actual cache-line fills. Branch widening was remo
in later versions of Judy. (However, Judy was also tuned to use as few instructions as poss
when an access was likely to be in the cache.)

The presence of a CPU cache in modern machines has changed many of the ways to write
performance algorithm. To take advantage of a cache, it is important to leverage as much a
possible. In a Judy tree, the presence of a cache results in 1..3 (or more) fewer cache-line fi
access than would be possible without a cache.

As a digression, note that a hash method loses the advantages of a cache as the size of th
table approaches or exceeds the size of the cache. With very large hash tables the cache is
at all. Also, hash methods often use a linked list to handle collisions (synonyms) and typically
a slow hash algorithm (greater than 50ns) or suffer from numerous collisions. “Judy Scalab
Hashing” is an effective replacement for common hash methods. (See also http://www.hp.co
judy: information library: application notes: scalable hashing)



t-

rt) due
sub-
y tree.
 a lot
ists

rt this
ilar

mon
ital
, has
s, while
, they

 one.

.

 tree
rted

 The
 of
t the

a 2-
m of

pure

te, and

te
ge of
With an expanse of 232 (or 2564), a maximum of 4 cache-line fills would be required for a wors

case highly populated 256-ary digital tree access. In an expanse of 264 (or 2568), 8 cache-line fills
would be the worst case. In practice, Judy does much better than this. The reason is (in pa
to the fact “density” of the keys is seldom the lowest possible number in a “majority” of the 
expanses. It takes high density combined with high population to increase the depth of a Jud
It would take a long time to explain why. The short version is an analogy with sand. It takes
of sand to build a tall sand pile. (In a 64-bit Judy, it would probably require more RAM than ex
on this planet to get it to have 8 levels.)

Judy adapts efficiently to a wide range of population counts and population types. To suppo
flexibility, in 32[64]-bit Judy there are approximately 25[85] major data structures and a sim
number of minor structures. I am going to only describe a few of them so you can infer how
density is synergistic with compression.

From a memory consumption (size) point of view, a Judy tree shares (does not duplicate) com
digits of a key in a tree. This form of key compression is a natural outcome from using a dig
tree. This would be very awkward to do in trees balanced by population and, as far as I know
never been done. Each pointer traversed in a Judy tree points to ever smaller sub-expanse
decoding another 8 bits of the key. (In a pure digital tree, the keys are not stored in the tree
are inferred by position.)

Now let me try to describe the top of a small Judy tree and the bottom of a highly populated
A Judy tree with a population of zero is simply a NULL pointer. A Judy (JudyL) tree with a
population of one is a root pointer to a 2-word object containing a value and associated key

A tree with a population of two points to a 4-word object with 2 values and 2 sorted keys. A
with a population of three points to an 8-word object with a count word + 3 values and 3 so
keys.

This continues until the population grows to 32 keys. At this point an actual tree structure is
formed with a “compressed” 256-ary node (branch) that decodes the first byte of each key.
value 32 was chosen because this is where a tree structure requires an equivalent number
cache-line fills. All objects below this top branch contain keys that are shortened by at leas
first byte.

There are three kinds of branches. Two are 1-cache-line fill objects to traverse, and one is 
cache-line fill object to traverse. In every path down the tree and at all populations, a maximu
one of the 2-cache-line fill branches is used. This means it is sometimes possible to have 1
additional (the branch design often subtracts 1) cache-line fill than you would expect from a
256-ary branch traversal in an otherwise complete Judy tree.

On the other extreme, a highly populated tree where the key has been decoded down to 1 by
the density of a 256-wide sub-expanse of keys grows to greater than 0.094 (25 keys / 256
expanse), a bitmap of 32 bytes (256 bits) is formed from an existing sorted array of 24 1-by
keys. (I am leaving out the handling of the values.) This results in a key using about an avera



this

ey +

e, the
set of

nters

JPM,
ate
arches

ome of
te on
1.3 (32/25) bytes of memory (up from 1.0). Note that increasing the density (population) at 
point does NOT require more memory for keys. For example, when the density reaches 0.5
(population = 128 / expanse = 256), the memory consumed is about 2 bits ((32/128)*8) per k
some overhead (2.0+ words) for the tree structure.

Notice that to insert or delete a key is almost as simple as setting or clearing a bit. Also notic
memory consumption is almost the same for both 32- and 64-bit Judy trees. Given the same
keys, both 32- and 64-bit Judy trees have remarkably similar key-memory, depth, and
performance. However, the memory consumption for 64-bit Judy is higher because the poi
and values (JudyL) are double the size.

In this short writeup it wasn’t possible to describe all the data structure details such as: Root,
narrow and rich pointers, linear, bitmap and uncompressed branches, value areas, immedi
indexes, terminal nodes (leafs), least compressed form, memory management, fast leaf se
and counting trees.

Well I cannot describe Judy in 10 minutes -- what possessed me? I hope you understand s
what I have said and question me on the rest -- particularly those doubts. I will try to elabora
parts where I get many questions.


	A 10-MINUTE DESCRIPTION OF HOW JUDY WORKS AND WHY IT IS SO FAST

