
Nickle Tutorial

Robert Burgess

Keith Packard

Nickle Tutorial
by Robert Burgess and Keith Packard

This is a user tutorial for Nickle, a powerful desktop calculator language. Nickle supports many
features of advanced languages, as well as arbitrary precision numbers. This tutorial is intended
to teach Nickle to someone who is already fairly familiar with programming, using descriptions
with examples. Topics are covered progressively, beginning with invocation and commands,
moving on to learning the language, and finally to more advanced topics.

Table of Contents
1. Nickle Tour...1
2. Nickle Basics..5

Invocation..5
Commands ..5

Expressions ..5
Quit ...6
Print ..6
Undefine...6
Loading files ..7
Edit..7
History..7

3. Language introduction...9
Nickle Datatypes ..9

Primitive datatypes ..9
Composite datatypes..11
Declarations...15
Initializers ..15
Identifier scope..16
Storage classes...17

Nickle Expressions ...18
Variable declarations ..18
Anonymous function declarations...19
Binary operators..19
Unary operators ..21
Constants ...21
Variables...22
Struct and union references...22
Array references..22
The fork operator ..23
Comma operator...23

Control Statements in Nickle..23
Simple statements...23
Conditionals ..23
Twixt ...24
Switch ...24
Union switch ...25
Loops ..26
Flow control...27

Nickle Functions...27
4. Builtins..29

Input and Output ...29
Opening and closing files ..29
Flush ...30
End..30
Characters and strings ...30
Unicode and characters vs. bytes ...30
Formatted I/O...31
At the top level..31

Math ...32
Numbers ..32
Operators ...32
The Math namespace ...32

Strings ..34
Operators ...34
String namespace..35

iii

5. Advanced topics ..37
Copy Semantics and Garbage Collection ...37

Copy by value ...37
Garbage collection ..38
Type checking and subtyping ...38

Nickle Namespaces..39
Extend...40
Peering inside..40

Nickle Exceptions...40
Raise..41
Try - catch...41
Twixt ...42

Threads and Mutual Exclusion in Nickle ...42
Basic threading..43
Thread functions...43
Mutual exclusion ..44
An example..45
Semaphores..45

Nickle Continuations...47

iv

Chapter 1. Nickle Tour

The following is an example Nickle session, interspersed with comments.

$ nickle

Arithmetic works as expected, with a rich set of operators.

> 1 + 1
2
> 2 ** (2 + 2)
16
> 5!
120

Rationals are represented exactly, but printed in decimal. Math is done with infi-
nite precision. Notice that integer division (//) is different from rational division (/).
Nickle provides some conveniences, such as . denoting the last value printed.

> 1 / 3
0.{3}
> . * 3
1
> 1 // 3
0

Variables can be declared implicitly at the top level, as well as explicitly with type.
The results of statements are not printed; terminating an expression with a semicolon
makes it a simple statement. C-like control structures may also be used at the top
level; the + prompt indicates an incomplete line to be continued.

> x = .
0
> int y = x;
> ++y;
> for(int i = 0; i < 25; i++)
+ x += 0;
> x
0
> for(int i = 1; i < 9; i += 2)
+ x += i;
> x
16

When performing square roots, Nickle will stay exact when possible. If the result is
irrational, however, it will be stored as an inexact real. Imprecision is contagious; if
a rational operator combines an imprecise variable with a precise one, the result will
be imprecise.

> sqrt(x)
4
> sqrt(2)
1.414213562373095
> .**2
2
> sqrt(5)
2.236067977499789
> . ** 2
4.999999999999999
> . / 5
0.999999999999999

1

Chapter 1. Nickle Tour

Functions can also be typed at the top level. Since functions, as most things, are first-
class in Nickle, they may be declared and assigned as below.

> real foo(real x, real y) {
+ return x * y;
+ }
> foo(2, 3)
6
> foo(4, 2)
8
> real(real, real) bar = foo;
> bar(4, 2)
8
>

Nickle is guaranteed never to dump core; it has a simple yet powerful exception
system it uses to handle all errors. An unhandled exception leads to the debugger,
which uses a - prompt. The debugger can be used to trace the stack, move up and
down on it, and check values of variables.

> (-1) ** (1/2)
Unhandled exception invalid_argument ("sqrt of negative number", 0, -1)
/usr/share/nickle/math.5c:19: raise invalid_argument ("sqrt of negative number", 0, v);

sqrt (-1)
/usr/share/nickle/math.5c:895: result = sqrt (a);

pow (-1, 0.5)
<stdin>:1: -1 ** (1 / 2);
- done
> quit
$

Large chunks of code can be placed in a separate text file and loaded when needed.
The print command can be used to inspect variables, functions, namespaces, and
other names. import brings the names in a namespace into scope. The :: operator
can be used to view those names without importing them. (These can also be used
with several namespaces built in to Nickle, such as Math and File.)

$ nickle
> load "cribbage.5c"
> print Cribbage
namespace Cribbage {

public void handprint (int[*] hand);
public int scorehand (int[*] hand);

}
> print Cribbage::handprint
public void handprint (int[*] hand)
{

printf ("hand { ");
for (int i = 0; i < dim (hand); ++i)

switch (hand[i]) {
case 1:

printf ("A ");
break;

case 11:
printf ("J ");
break;

case 12:
printf ("Q ");
break;

case 13:
printf ("K ");
break;

default:
printf ("%d ", hand[i]);

}

2

Chapter 1. Nickle Tour

printf ("} ");
}
> import Cribbage;
> int[5] hand = { 7, 8, 12, 10, 5 };
> handprint(hand); printf(" has %d points.\n", scorehand(hand));
hand { 7 8 Q 10 5 } has 6 points.
> quit
$

3

Chapter 1. Nickle Tour

4

Chapter 2. Nickle Basics

Nickle is a powerful desktop calculator language with many features of advanced
languages and support for arbitrary precision numbers. It can run interactively to
fulfill its role as a calculator, evaluate single expressions, and execute Nickle scripts.
It also has an array of useful top-level commands for interacting with the interpreter.

Invocation

nickle [-f file] [-l file] [-e expr] [script] [--] [arg ...]

-f

Evaluate file.

-l

Evaluate file like -f, but expect it to be in $NICKLEPATH.

-e

Evaluate a Nickle expression, e.g.

$ nickle -e 3**4
81
$

script

If Nickle encounters an unflagged argument, it assumes it to be the name of a
script, which it runs. If a .nicklerc file is available, it will be evaluated first.
No more arguments are processed; the rest of the line is given to the script as its
arguments.

Without -e or a script as an argument, Nickle runs interactively, accepting standard
input and writing to standard output.

Commands
The following are commands that the Nickle interpreter understands, not actual lan-
guage constructs. They may be issued only at the top level.

Expressions
If an expression is issued at the top level, such as 3**4 or 100!,, its value is printed
to standard output. If the expression ends with a # sign and another expression, its
value is printed in whatever base the second expression evaluates to.

$ nickle
> 10!
3628800
> 3**4
81
> 3**4 # 3
10000

5

Chapter 2. Nickle Basics

>

Statements, from expressions terminated by semicolons to complicated control struc-
tures, are executed but have no value to print. Statements are not commands but
actual syntax, so they may be used in scripts. If a line is ended before it can be sen-
sible as an expression or statement, Nickle will continue until it is a statement, e.g.

$ nickle
> int x
+ = 0
+ ;
>

Quit
The quit command exits Nickle. An optional argument specifies the return value.

$ nickle
> quit
$

Print
The print command provides information such as visibility, type, and value, about
a name. It need not be the name of a variable; functions, namespaces, etc. may also
be printed.

$ nickle
> int x = 2;
> print x
global int x = 2;
> print String
public namespace String {

public int length (string) <builtin>
public string new (poly) <builtin>
public int index (string, string) <builtin>
public string substr (string, int, int) <builtin>
public int rindex (string target, string pattern);
public string dirname (string name);

}
> void function hello() { printf("hello, world\n"); }
> print hello
void hello ()
{

printf ("hello, world\n");
}
>

6

Chapter 2. Nickle Basics

Undefine
A defined name can be undefined, e.g.

$ nickle
> print x
No symbol "x" in namespace
> int x = 0;
> print x
global int x = 0;
> undefine x
> print x
No symbol "x" in namespace
>

Loading files
The load and library commands evaluate a file at runtime like the -f and -l flags,
respectively.

Edit
The edit command invokes $EDITOR on the name given as an argument. This is
particularly useful to change a function while in interactive mode.

$ nickle
> void function hello() { printf("hello, world\n"); }
> edit hello
49
3

printf ("hello, world\n");
c
printf ("goodbye, cruel world\n");
wq
53
> print hello
void hello ()
{

printf ("goodbye, cruel world\n");
}
>

History
The history command retrieves the values of the last ten expressions. With an ar-
gument, it instead retrieves the values of that many preceeding values. With two
arguments, it retrieves the specified range in history.

$ nickle
...
> history
$176 20
$177 5
$178 0
$179 12

7

Chapter 2. Nickle Basics

$180 12
$181 -2
$182 2
$183 2
$184 0
$185 10
$186 32
> history 3
$184 0
$185 10
$186 32
> history 180,185
$180 12
$181 -2
$182 2
$183 2
$184 0
$185 10

These history items may be named and used directly:

> $180 ** 2
144
>

8

Chapter 3. Language introduction

In this chapter, the features of Nickle such as datatypes, expressions, control state-
ments, and functions will be discussed. By the end, most of the basic language fea-
tures will have been covered.

Nickle Datatypes

Primitive datatypes
Nickle has a large set of primitive datatypes. Instead of overloading existing
datatypes to represent fundamentally distinct objects, Nickle provides additional
primitive datatypes to allow for typechecking. For instance, instead of using small
integers to identify file handles, Nickle provides a file datatype.

Numeric datatypes
Nickle has three numeric datatypes:

• int

• rational

• real

Int and rational values are represented exactly to arbitrary precision so that compu-
tations need not be concerned about values out of range or a loss of precision during
computation. For example,

> 1/3 + 2/3 == 1
true
> 1000! + 1 > 1000!
true

As rationals are a superset of the integers, rational values with denominator of 1
are represented as ints. The builtin is_int demonstrates this by recognizing such
rationals as integers:

> rational r = 1/3;
> is_int(r)
false
> is_int(r*3)
true

Real values are either represented as a precise int or rational value or as an impre-
cise value using a floating point representation with arbitrary precision mantissa and
exponent values. Imprecision is a contagious property; computation among precise
and imprecise values yields an imprecise result.

> real i=3/4, j=sqrt(2);
> is_rational(i)
true
> is_rational(j)
false

9

Chapter 3. Language introduction

> is_rational(i*j)
false

Upward type conversion is handled automatically; divide an int by and int and the
result is rational. Downward conversion only occurs through builtin functions which
convert rational or real values to integers.

> int i=4, j=2;
> is_rational(i/j)
true

String datatype
A string holds a read-only null-terminated list of characters. Several builtin func-
tions accept and return this datatype. Elements of a string are accessible as integers
by using the array index operators. See the section on Strings.

string foo = "hello";
string bar = "world";
string msg = foo + ", " + bar;

printf("%s\n", msg); /* hello, world */

File datatype
The file datatype provides access to the native file system. Several builtin functions
accept and return this datatype. See the section on input and output.

file f = open("file", "w");
File::fprintf(f, "hello, world!\n");
close(f);

Concurrency and control flow datatypes
Nickle has builtin support for threading, mutual exclusion, and continuations, along
with the associated types:

• thread

• mutex

• semaphore

• continuation

Threads are created with the fork expression, the result of which is a thread value.
Mutexes and semaphores are synchronization datatypes. See the section on Concur-
rency and Continuations.

thread t = fork 5!;
do stuf...
printf("5! = %d\n", join(t)); /* 5! = 120 */

10

Chapter 3. Language introduction

Continuations capture the dynamic state of execution in much the same way as a C
jmp_buf except that the longjmp operation is not limited to being invoked from a
nested function invocation. Rather, it can be invoked at any time causing execution
to resume from the point of setjmp. See the section on Continuations.

Poly datatype
Non-polymorphic typechecking is occasionally insufficient to describe the semantics
of an application. Nickle provides an ’escape hatch’ through the poly datatype. Every
value is compatible with poly; a variable with this type can be used in any circum-
stance. Nickle performs full run-time typechecking on poly datatypes to ensure that
the program doesn’t violate the type rules.

> poly i=3, s="hello\n";
> i+3
6
> s+3 /* can’t add string and int */
Unhandled exception "invalid_binop_values" at <stdin>:45

3
"hello\n"
"invalid operands"

> printf(i) /* printf expects a string */
Unhandled exception "invalid_argument" at <stdin>:47

3
0
"Incompatible argument"

> printf(s)
hello
>

Void datatype
To handle functions with no return value and other times when the value of an object
isn’t relevant, Nickle includes the void datatype. This is designed to operate in much
the same way as the unit type does in ML. Void is a type that is compatible with only
one value, ’<>’. This value can be assigned and passed just like any other value, but
it is not type compatible with any type other than void and poly.

Composite datatypes
Nickle allows the basic datatypes to be combined in several ways.

• struct

• union

• arrays

• pointers

• references

• functions

11

Chapter 3. Language introduction

Structs
Structs work much like C structs; they composite several datatypes into an aggregate
with names for each element of the structure. One unusual feature is that a struct
value is compatible with a struct type if the struct value contains all of the entries in
the type. For example:

typedef struct {
int i;
real r;

} i_and_r;

typedef struct {
int i;

} just_i;

i_and_r i_and_r_value = { i = 12, r = 37 };

just_i i_value;

i_value = i_and_r_value;

The assignment is legal because i_and_r contains all of the elements of just_i.
i_value will end up with both i and r values.

Unions
Unions provide a way to hold several different datatypes in the same object. Unions
are declared and used much like structs. When a union element is referenced, Nickle
checks to make sure the referring element tag is the one currently stored in the union.
This provides typechecking at runtime for this kind of polymorphism. Values can
be converted to a union type by specifying a compatible union tag cast. A control
structure union switch exists to split out the different tags and perform different
functions based on the current tag:

typedef union {
int i;
real r;

} i_and_r_union;

i_and_r_union u_value;

u_value.i = 37;

union switch (u_value) {
case i:

printf ("i value %d\n", u_value.i);
break;

case r:
printf ("r value %d\n", u_value.r);
break;

}

u_value = (i_and_r_union.r) 1.2;
printf ("u_value %g\n", u_value); /* u_value r = 1.2 */

12

Chapter 3. Language introduction

Arrays
Array types in Nickle determine only the number of dimensions and not the size of
each dimension. Therefore they can be declared in one of three ways:

int[*] a;
int[...] b;
int[3] c;

By these declarations, a, b and c are of the same type (one-dimensional array). The
specification of the size of c actually has no effect on its declaration but rather on its
initialization. See Initialization below. Declaring multidimensional arrays in Nickle
is different than in C; C provides only arrays of arrays while Nickle allows either:

int[3,3] array_2d = {};
int[3][3] array_of_arrays = { (int[3]) {} ... };

array_2d[0,0] = 7;
array_of_arrays[0][0] = 7;
array_of_arrays[1] = (int[2]) { 1, 2 };

These two types can be used in similar circumstances, but the first ensures that the
resulting objects are rectangular while the second allows for each row of the array
to have a different number of elements. The second also allows for each row to be
manipulated separately. The final example shows an entire row being replaced with
new contents.

Array values created with ’...’ in place of the dimension information are resizable;
requests to store beyond the bounds of such arrays will cause the array dimensions
to be increased to include the specified location. Resizable arrays may also be passed
to the setdim and setdims built-in functions.

Hashes
Hashes provide an associative mapping from arbitrary keys to values. Any type may
be used as the key. This allows indexing by strings, and even composite values. They
are called hashes instead of associative arrays to make the performance characteris-
tics of the underlying implementation clear.

Hashes are declared a bit like arrays, but instead of a value in the brackets, a type is
placed:

int[string] string_to_int = { "hello" => 2, => 0 };
float[float] float_to_float = { 2.5 => 27 };

string_to_int["bar"] = 17;
string_to_int["foo"] += 12;
float_to_float[pi] = pi/2;

The initializer syntax uses the double-arrow => to separate key from value. Eliding
the key specifies the "default" value -- used to instantiate newly created elements in
the hash.

13

Chapter 3. Language introduction

Pointers
Pointers hold a reference to a separate object; multiple pointers may point at the same
object and changes to the referenced object are reflected both in the underlying object
as well as in any other references to the same object. While pointers can be used
to point at existing storage locations, anonymous locations can be created with the
reference built-in function; this allows for the creation of pointers to existing values
without requiring that the value be stored in a named object.

*int pointer;
int object;

pointer = &object;
*pointer = 12;

printf ("%g\n", object); /* 12 */

pointer = reference (37);
(*pointer)++;

printf ("%g\n", *pointer); /* 38 */

References
References, like pointers, refer to objects. They are unlike pointers, however; they are
designed to provide for calls by reference in a completely by-value language. They
may eventually replace pointers altogether. They are declared and assigned similarly,
but not identically, to pointers:

&int ref;
int i;

i = 3;
&ref = &i;

ref is declared as a reference to an integer, &int. An integer, i, is declared and given
the value 3. Finally, the assignment carries some interesting semantics: the address
of the reference is set to the address of i. References may also be assigned otherwise
anonymous values with reference, e.g.

&int foo;
&foo = reference (3);

References, unlike pointers, need not be dereferenced; they are used exactly as any
other value. Changing either the value it refers to or the reference itself changes both.

printf("%g\n", i); /* 3 */
printf("%g\n", ref); /* 3 */

++ref;

printf("%g\n", i); /* 4 */
printf("%g\n", ref); /* 4 */

14

Chapter 3. Language introduction

Functions
Nickle has first-class functions. These look a lot like function pointers in C, but impor-
tant semantic differences separate the two. Of course, if you want a function pointer
in Nickle, those are also available. Function types always have a return type and zero
or more argument types. Functions may use the void return type. The final argu-
ment type may be followed by an elipsis (...), in which case the function can take any
number of arguments at that point, each of the same type as the final argument type:

int(int, int) a;
void(int ...) b;

a(1,2);
b(1);
b(1,2);
b(1,"hello"); /* illegal, "hello" is not compatible with int */

See the section on Functions.

Declarations
A declaration in Nickle consists of four elements: publication, storage class, type, and
name. Publication, class, and type are all optional but at least one must be present and
they must be in that order.

• Publication is one of public or protected, which defines the name’s visibility within
its namespace. When publication is missing, Nickle uses private meaning that
the name will not be visible outside of the current namespace. See the section on
Namespaces.

• Class is one of global, static, or auto. When class is missing, Nickle uses auto for
variables declared within a function and global for variables declared at the top
level. See Storage classes below.

• Type is some type as described here, for instance

type /* primitive type */
type / pointer to type */
&type /* reference to type */
type[*] /* array of type */
type[*,...] /* multidimensional array of type */
type(type,...) /* function with type arguments and return value */
struct { ... } /* struct of types */
union { ... } /* union of types */
type(type,...)[*] /* array of functions */
/* etc. */

When type is missing, Nickle uses poly, which allows the variable to hold data of
any type. In any case, type is always checked at runtime.

15

Chapter 3. Language introduction

Initializers
Initializers in Nickle are expressions evaluated when the storage for a variable comes
into scope. To initialize array and structure types, expressions which evaluate to a
struct or array object are used:

int k = 12;
int z = floor (pi * 27);
int[3] a = (int[3]) { 1, 2, 3 };

typedef struct {
int i;
real r;

} i_and_r;

i_and_r s = (i_and_r) { i = 12, r = pi/2 };

As a special case, initializers for struct and array variables may elide the type leaving
only the bracketed initializer:

int[3] a = { 1, 2, 3 };
i_and_r s = { i = 12, r = pi/2 };

Instead of initializing structures by their position in the declared type, Nickle uses the
structure tags. This avoids common mistakes when the structure type is redeclared.

An arrays initializer followed by an elipsis (...) is replicated to fill the remainder of
the elements in that dimension:

int[4,4] a = { { 1, 2 ... }, { 3, 4 ... } ... };

This leaves a initialized to an array who’s first row is { 1, 2, 2, 2 } and subse-
quent rows are { 3, 4, 4, 4 }. It is an error to use this elipsis notation when the
associated type specification contains stars instead of expressions for the dimensions
of the array. Variables need not be completely initialized; arrays can be partially filled
and structures may have only a subset of their elements initialized. Using an unini-
tialized variable causes a run time exception to be raised.

Identifier scope
Identifiers are scoped lexically; any identifier in lexical scope can be used in any ex-
pression (with one exception described below). Each compound statement creates a
new lexical scope. Function declarations and statement blocks also create new lexical
scopes. This limits the scope of variables in situations like:

if (int i = foo(x))
printf ("i in scope here %d\n", i);

else
printf ("i still in scope here %d\n", i);

printf ("i not in scope here\n");

Identifiers are lexically scoped even when functions are nested:

function foo (int x) {

16

Chapter 3. Language introduction

int y = 1;
function bar (int z) { return z + y; }
return bar (x);

}

Storage classes
There are three storage classes in Nickle:

• auto

• static

• global

The storage class of a variable defines the lifetime of the storage referenced by the
variable. When the storage for a variable is allocated, any associated initializer ex-
pression is evaluated and the value assigned to the variable.

Auto variables
Auto variables have lifetime equal to the dynamic scope where they are defined.
When a function is invoked, storage is allocated which the variables reference. Suc-
cessive invocations allocate new storage. Storage captured and passed out of the
function will remain accessible.

*int function foo (int x)
{

return &x;
}

*int a1 = foo (1);
*int a2 = foo (2);

a1 and a2 now refer to separately allocated storage.

Static variables
Static variables have lifetime equal to the scope in which the function they are de-
clared in is evaluated. A function value includes both the executable code and the
storage for any enclosed static variables, function values are created from function
declarations.

int() function incrementer ()
{

return (func () {
static int x = 0;
return ++x;

});
}

int() a = incrementer();
int() b = incrementer();

17

Chapter 3. Language introduction

a and b refer to functions with separate static state and so the values they return
form independent sequences. Because static variables are initialized as the function
is evaluated and not during function execution, any auto variables declared within
the enclosing function are not accessible. This is the exception to the lexical scoping
rules mentioned above. It is an error to reference auto variables in this context. Addi-
tionally, any auto variables declared within an initializer for a static variable exist in
the frame for the static initializer, not for the function.

function foo ()
{

static function bar (*int z)
{

*z = (*z)!;
}
static x = ((int y = 7), bar (&y), y);

return x;
}

The static initializer is an anonymous function sharing the same static scope as the
function containing the static declarations, but having its own unique dynamic scope.

Global variables
Global variables have lifetime equal to the global scope. When declared at global
scope, storage is allocated and the initializer executed as soon as the declaration is
parsed. When declared within a function, storage is allocated when the function is
parsed and the initializer is executed in the static initializer of the outermost enclos-
ing function.

function foo ()
{

function bar ()
{

global g = 1;
static s = 1;

g++;
s++;
return (int[2]) { g, s };

}
return bar ();

}

Because g has global scope, only a single instance exists and so the returned values
from foo increment each time foo is called. However, because s has static scope, it
is reinitialized each time bar is reevaluated as the static initializer is invoked and
returns the same value each time foo is called.

Nickle Expressions
Expression types are listed in order of increasing precedence.

18

Chapter 3. Language introduction

Variable declarations
Variable declarations are expressions in Nickle; the value of a declaration is the value
of the last variable with an initialization expression. For example,

> int val;
> val = (int i=2, j=3);
> print val
global int val = 3;

If no initialization expressions are present, it is an error to use the value of the expres-
sion.

> val = (int i,j);
Unhandled exception "uninitialized_value" at <stdin>:73

"Uninitialized value"

Because they are expressions, declarations can be used in contructs such as:

for (int i = 0; i < 10; i++)
{

}

Anonymous function declarations
Functions may be declared anonymously and used immediately, e.g.

> (int func (int a, int b) { return a + b; })(2,3)
5

Any context available to the function at definition time will be available whenever it
is executed. See Storage classes in the section on Variables.

Binary operators

Addition

a + b

Subtraction

a - b

Multiplication

a * b

19

Chapter 3. Language introduction

Division
Integer division

a / b
a // b

Remainder

a % b

Exponentiation

a ** b

Left shift
Right shift

a << b
a >> b

Binary xor
Binary and
Binary or

a ^ b
a & b
a | b

Boolean and
Boolean or

a && b
a || b

Equal
Not equal

a == b
a != b

Less than
Less than or equal to

a < b
a <= b

Greater than
Greater than or equal to

a > b
a >= b

Assignment

a = b

Assignment with operator

a += b
a -= b
a *= b

20

Chapter 3. Language introduction

a /= b
a //= b
a %= b
a **= b
a >>= b
a <<= b
a ^= b
a &= b
a |= b

Unary operators

Dereference:

* a

Reference:

& a

Negation:

- a

Bitwise inverse:

~ a

Logical not:

! a

Factorial:

a !

Increment:

++ a
a ++

Decrement:

-- a
a --

Constants

Integer constants
Integer constants with a leading zero are interpreted in octal, with a leading 0x in
hex-decimal and with a leading 0b in binary. Here are some examples:

12 /* 12, decimal */
014 /* 12, octal */
0xc /* 12, hex */
0b1100 /* 12, binary */

21

Chapter 3. Language introduction

Rational constants
Rational constants are the combination of an integer part, a mantissa with an initial
and repeating part, and an exponent. All of these pieces are optional, but at least one
of the parts (other than the exponent) must be present. If no fractional part is given,
the resulting type of the value is int rather than rational. Some examples:

> 12
12
> 12.5
12.5
> .34
0.34
> .{56}
0.{56}
> .34e3
340
> .{56}e12
565656565656.{56}

String constants
String constants are surrounded in double quotes, e.g. "hello, world". Characters pre-
ceded by a backslash stand for themselves, including double-quote (\") and black-
slash (\\). The following backslashed characters are special:

• \n is newline

• \r is carriage return

• \b is backspace

• \t is tab

• \f is formfeed

Variables
The name of a variable is replaced by the value of that variable in expressions. If the
name is of a pointer, preceding it with the * dereference operator yields the value of
its target.

Struct and union references
The construct

struct.name

yields the element name of the struct or union struct. To retrieve elements from a
struct or union pointer, as in C, use

struct->name

22

Chapter 3. Language introduction

Array references

arr[expr]

arr[expr,expr,...,expr]

Elements of an array are indexed with square braces. Elements of multidimensional
arrays have indices in each dimension as in the second form. Pointers to arrays can
be indexed by placing the * dereference operator between the name of the array and
the first square brace:

arr*[expr]

This is, however, deprecated in favor of using references to arrays, which have no
such problems.

The fork operator
The fork operator evaluates its argument in a child thread. See the section on Con-
currency.

Comma operator

expr, expr

Evaluates each expression in turn, the resulting value is that of the right hand expres-
sion. For example,

> 1+2, 5!, 3**4, 27/3
9

Control Statements in Nickle

Simple statements

expr;

; /* null statement */

{ statement ... }

The simplest statement is merely an expression terminated by a semicolon; the ex-
pression is evaluated. A semicolon by itself is allowed but does nothing. One or more
statements may be grouped inside curly braces to form one compound statement;
each is executed in order. Any statements may compose the statement list, including
control statements and other curly-bracketed lists.

23

Chapter 3. Language introduction

Conditionals

if (expr) statement

else statement

if is used to execute a section of code only under some condition: If expr is true,
statement is executed; otherwise control skips over it. For example:

if (x == 0)
printf ("x is zero.\n");

In this case, the message will be printed only if x is zero.

else allows for a choice if the condition fails. It executes its statement if the most
recent if or twixt (see below) did not. For example,

if (x == 0)
printf ("x is zero.\n");

else
printf ("x is not zero.\n");

More than one option may be presented by nesting further ’if’s in ’else’ statements
like this:

if (x == 0)
printf ("x is zero.\n");

else if (x < 0)
printf ("x is negative.\n");

else
printf ("x is positive.\n");

Twixt

twixt (expr; expr) statement

Ensures that the the first expr will always have been evaluated whenever control
flow passes into any part of statement and ensures that the second expr will be
evaluated anytime control flow passes out of statement. That order is gauranteed. If
a long_jmp target is inside statement, the first expr will be executed before control
passes to the target. If statement throws an exception or long_jmps out of the twixt,
the second expr will be evaluated. Thus, twixt is useful in locked operations where
the statement should only be executed under a lock and that lock must be released
afterwards.

twixt (get_lock (); release_lock ())
locked_operation ();

24

Chapter 3. Language introduction

Switch

switch (expr) { case expr: statement-list ... default: statement-list }

Control jumps to the first case whose expr evaluates to the same value as the expr
at the top. Unlike in C, these values do not have to be integers, or even constant.
The optional case default matches any value. If nothing is matched and there is no
default, control skips the switch entirely. This example prints out a number to the
screen, replacing it by a letter as though it were a poker card:

switch (x) {
case 1:

printf ("A\n"); /* ace */
break;

case 11:
printf ("J\n"); /* jack */
break;

case 12:
printf ("Q\n"); /* queen */
break;

case 13:
printf ("K\n"); /* king */
break;

default:
printf ("%d\n", x); /* numeric */
break;

}

Notice the breaks in the example. Once control jumps to the matching case, it con-
tinues normally: Upon exhausting that statement-list, it does not jump out of the
switch; it continues through the subsequent statement lists. Here is an example of
this ’falling through’:

int x = 3;

switch (sign (x)) {
case -1:

printf ("x is negative.\n");
case 1:

printf ("x is positive.\n");
default:

printf ("x is zero.\n");
}

This prints:

x is positive.
x is zero.

Falling through may be desirable if several cases are treated similarly; however, it
should be used sparingly and probably commented so it is clear you are doing it on
purpose. This is a difficult error to catch.

25

Chapter 3. Language introduction

Union switch

union switch (union) { case name: statement-list ... default: statement-list }

union switch is similar to switch. It matches its cases based on what name cur-
rently applies to the union’s value. As always, default matches everything. The fol-
lowing example chooses the best way to print the union:

union {
int a;
string b;

} u;

u.b = "hello";

union switch (u) {
case a:

printf ("%d\n", u.a);
break;

case b:
printf ("%s\n", u.b);
break;

}

In this case, it prints ’hello’.

An additional name may follow that of a case; the union’s value will be available
inside the case by that name. The switch above could have been written:

union switch (u) {
case a num:

printf ("%d\n", num);
break;

case b str:
printf ("%s\n", str);
break;

}

Loops

while (expr) statement

do statement while (expr)

for (expr; expr; expr) statement

while executes statement repeatedly as long as expr is true. Control continues out-
side the loop when expression becomes false. For example:

int x = 0;
while (x < 10) {

printf ("%d\n", x);
++x;

}

This prints the numbers from zero to nine.
26

Chapter 3. Language introduction

do-while is like while, but tests the condition after each iteration rather than before.
Thus, it is garaunteed to execute at least once. It is often used in input while testing
for end-of-file:

file f = File::open ("test", "r");

do {
printf ("%s\n", File::fgets (f));

} while (! end (f));

close (f);

for begins by evaluating the first expr, which often initializes a counter variable;
since declarations are expressions in Nickle, they may be used here and the counter
will be local to the loop. Then it executes statement as long as the second expr
is true, like while. After each iteration, the third expr is evaluated, which usually
increments or decrements the counter variable. The while example above can also
be written as the following for loop:

for (int x = 0; x < 10; ++x)
printf ("%d\n", x);

Flow control

continue

break

return expr

continue restarts the nearest surrounding do-while, while, or for loop by jumping
directly to the conditional test. The iterative statement of a for loop will be evaluated
first.

break leaves the nearest surrounding do-while, while, for, or switch statement by
jumping to its end. The iterative statement of a for loop will not be evaluated.

return returns from the nearest surrounding function with value expr.

Nickle Functions
An example function might be declared like this:

int gcf (int a, int b) {
int f = 1;
for (int i = 2; i <= abs (a) && i <= abs (b); ++i)

while ((a // f) % i == 0 && (b // f) % i == 0)
f *= i;

return f;
}

27

Chapter 3. Language introduction

First comes the return type of the function, then the function name, then the list of
arguments (with types), and finally the statement list in curly braces. If any types are
left off, Nickle assumes poly. In any case, all typechecking is done at runtime.

A function can take any number of arguments. The final argument may be succeeded
by an ellipses (...) to indicate an arbitrary, variable number of succeeding arguments,
each of the type of the final argument; the last argument takes on a list value to store
them.

...
> print sum
int sum (int a, int b ...)
{

for (int i = 0; i < dim (b); ++i)
a += b[i];

return a;
}
> sum(1,2)
3
> sum(4)
4
> sum(1,2,4,6)
13

Functions are called as in C, with their names followed by argument values in paren-
theses:

foo ("hello", 7.2);

Since they are first class, functions can be assigned:

int(int,int) a = gcf;

See the section on Copy semantics for details on what functions may be assigned to
each other.

Functions may also be declared and used anonymously:

(int func (int a, int b) { return a + b; })(2,3); /* 5 */

Replacing the function name with the keyword func indicates its anonymity.

28

Chapter 4. Builtins

This chapter will explain various important builtin functions of Nickle, such as those
for input and output and math. It will also discuss the various operators and builtin
functions that manipulate strings.

Input and Output
Input and output in Nickle are mostly accomplished through the File builtin names-
pace; some top-level builtins refer to those functions. Nickle’s input and output are
modeled, as much of the language is, on C, but many changes have been made.

Opening and closing files
The functions in the File namespace use the file primitive type to describe filehan-
dles. Three are predefined, with their usual meanings: stdin, stdout, and stderr.
For many functions in File, there is a top-level builtin which assumes one of these
standard streams. Other files may be read and written by opening them:

file open(string path, string mode)

The first string gives the path to the file to be opened; the second is one of:

• "r" to open read-only, starting at the beginning of the file.

• "r+" to open read-write, starting at the beginning of the file.

• "w" to create or truncate the file and open write-only.

• "w+" to create or truncate the file and open read-write.

• "a" to open write-only, appending to the end of the file.

• "a+" to open read-write, appending to the end of the file.

If successful, a filehandle will be returned that can then be used.

Nickle can also open pipes to other programs, reading or writing to their stdouts or
stdins; these are also treated as files, and the difference is transparent to the func-
tions that manipulate them. Pipes are opened with pipe rather than open; otherwise
they are treated identically to flat files.

file pipe(string path, string[*] argv, string mode)

The first string refers to the program to be run; argv is an array of the arguments to
pass to it. By convention, argv[0] should be the name of the program. Finally, mode
is one of those for open; reading from the pipe reads from the program’s stdout, and
writing to the pipe writes to the program’s stdin. For example,

$ nickle
> string[*] args = {"-a"};
> file ls = File::pipe ("ls", args, "r");
> do printf ("%s\n", File::fgets (ls));
+ while (! File::end (ls));
bin
man
nickle
share

29

Chapter 4. Builtins

When a file is no longer needed, it should be closed.

void close(file f)

> File::close (ls);

Flush
Output written to a file is not immediately written, but buffered until an appropri-
ate time. Ordinarily, this is not noticed; if, however, it is important to know that all
buffers have been written to a file, they can be flushed:

void flush (file f)

End
Returns true if the file is at end-of-file, otherwise returns false.

bool end (file f)

Characters and strings
Individual characters can be read and written using getc, getchar, putc, and
putchar.

int getc(file f)

int getchar()

int putc(int c,file f)

void putchar(int c)

A character can be pushed back onto the stream with ungetc or ungetchar.

int ungetc(int c, file f)

int ungetchar(int c)

Strings can be read, a line at a time, using fgets and gets.

string fgets(file f)

string gets()

All of these are like their C counterparts, with the exception noted in the following
section.

Unicode and characters vs. bytes
Unicode is a standard for representing characters, like ASCII. However, Unicode is
designed to be able to support a much larger range of characters; in fact, every charac-
ter in every alphabet worldwide. It is optimized so standard ASCII characters retain
their ASCII codes, and characters are not larger than they have to be. Because of its
advantages, and the possibility that it may become more standard than ASCII, and

30

Chapter 4. Builtins

because there is no reason not to, Nickle reads and writes Unicode. This is entirely
transparent to the user/programmer.

However, there is one situation in which the programmer will notice (disregarding
the case where the programmer finds himself typing on a Sanskrit keyboard): ex-
tended characters that do not stand for themselves the same in ASCII and Unicode
are not one byte long; they can be as many as four for the really obscure characters.
Therefore, unlike in C, characters cannot be counted on to be the same as bytes. For this
reason, Nickle provides the following functions:

int putb(int c,file f)

int getb(file f)

int ungetb(file f)

These operate the same as putc, getc, and ungetc, but will always read or write one
byte at a time, regardless of character representation.

Formatted I/O
Nickle provides functions such as printf, sprintf, and scanf to perform format-
ted input and output. These functions perform like their C counterparts, with the
following exceptions:

• The precision of a field in the format string may be specified to be ’-’, which means
infinite precision.

• The %g format specifier requires a number, and prints it in the best way possible.
For example:

> printf("%g %g %g\n", 1, 1/3, sqrt(2));
1 0.{3} 1.414213562373095

• The %v format specifier will attempt to find the best way to print whatever value
it is given. This is a great way to print polys whose types will not be known ahead
of time.

> printf("%v %v %v\n", 1/3, "hello", fork 4!);
(1/3) "hello" %38

Notice that it can even figure out difficult things like the thread returned by ’fork’.

At the top level
Many functions in the File namespace have counterparts builtin at the top level; these
do not need to be imported from File because they are automatically present.

• int printf(string fmt, poly args...) is the same as File::printf.

• string printf(string fmt, poly args...) is the same as File::sprintf.

• void putchar(int c) is the same as File::putchar.

File also contains a namespace called FileGlobals, which is automatically imported.
It contains the following definitions:

public int scanf (string format, *poly args...)
{

return File::vfscanf (stdin, format, args);
}

31

Chapter 4. Builtins

public int vscanf (string format, (*poly)[*] args)
{

return File::vfscanf (stdin, format, args);
}

public string gets ()
{

return File::fgets (stdin);
}

public int getchar ()
{

return File::getc (stdin);
}

public void ungetchar (int ch)
{

File::ungetc (ch, stdin);
}

Thus, scanf, vscanf, gets, getchar, and ungetchar call the appropriate functions in
File and return their results. The other functions in File must be imported as normal.

Math

Numbers
The three numeric types in Nickle--int, rational, and real--have a hierarchical rela-
tionship. Specifically, int is a subset of rational, which is a subset of real. Ints and
rationals are stored internally in infinite precision, and printed as precisely as pos-
sible (rationals with repeating portions are represented with curly braces to allow
more precision in printing; see the section on Expressions for a discussion of ratio-
nal constants). Reals are stored in finite, floating-point representations. The mantissa
defaults to 256 bits long, but this number can be changed.

Whenever performing calculations, Nickle will keep numbers in their most specific
format. For example, the result of ’4/2’ is an int, because although the result (2) is
a rational, it is also an int, and int is more specific. Similarly, reals are not always in
imprecise floating representation; if they are known exactly, they will be represented
as rationals or ints. Nickle will only produce imprecise reals when it has to, as in
square roots and logarithms.

Operators
In order to do the Right Thing for a desk calculator, Nickle provides several operators
that are not present in C; these are extremely useful. To force division to produce an
integer, even if the result would be a rational, use the ’//’ integer divide operator,
which always rounds its results to ints. Nickle also has an exponentiation opera-
tor ’**’, which behaves correctly for all exponents, including negative and fractional.
Therefore, sqrt(x) is the same as x**.5, and 1/x is the same as x**-1. Finally, it provides
a factorial operator ’!’.

32

Chapter 4. Builtins

The Math namespace
Nickle provides the builtin namespace Math for useful functions such as trigonomet-
ric functions, logarithms, as well as useful constants such as pi and e.

Logarithms

real log (real a)

real log10 (real a)

real log2 (real a)

The logarithm of a in base e, ten, and two, respectively.

$ nickle
> log (Math::e)
1.000000000000000
> log10 (16) / log10 (4) /* change of base formula, log_4 16 */
1.999999999999999
> log2 (16)
3.999999999999999
>

Trigonometric functions

real sin (real a)

real cos (real a)

real tan (real a)

real asin (real a)

real acos (real a)

real atan (real a)

The sine, cosine, and tangent of a, and the inverse functions.

$ nickle
> sin (pi) ** 2 + cos (pi) **2
1
> atan (1) * 4
3.141592653589793
>

Constants

protected real e

real pi

pi and e define the usual constants (3.14..., 2.72...). e is protected and must be called
Math::e to allow ordinary use of the name e.

33

Chapter 4. Builtins

Strings
Unlike in C, strings in Nickle are not arrays of or pointers to individual characters.
Consistent with its pattern of providing primitive datatypes for types for things that
make sense (e.g. file instead of integer file handles), Nickle provides the string
type. This has several interesting differences from C-style strings:

• In Nickle, strings are immutable--individual characters may not be changed.

• Strings are, as with everything else, assigned and passed by-value. See the section
on Copy semantics for details.

Operators
Two useful operators have been overloaded to allow sane manipulation of strings:
’+’ and array subscript (’[]’).

Subscripting
Although they are not arrays of characters, it is often useful to access a string a char-
acter at a time; the array subscript operator has been overloaded to allow this. For
example:

> string s = "hello, world";
> s[0]
104
> s[1]
101
> s[2]
108
> s[3]
108
> s[4]
111
>

Those are the integer representations of each character; they are most likely in ASCII,
but not necessarily--see the section on Unicode in the I/O section. The String names-
pace provides new to recreate a string from these integer character representations,
regardless of ASCII or Unicode:

string new(int c)

string new(int[*] cv)

For instance,

> String::new(s[0])
"h"

Concatenation
On strings, ’+’ is the concatenation operator. For example,

> string s = "hello", t = "world";
> s = s + ", ";

34

Chapter 4. Builtins

> t += "!";
> s+t
"hello, world!"

String namespace
In addition, the String namespace provides several useful functions that facilitate
using strings, including the following.

Length

int length (string s)

Returns the number of characters in s. For example,

$ nickle
> String::length ("hello, world")
12
>

Index

int index (string t, string p)

int rindex (string t, string p)

Returns the index of the first occurence of the substring p in t, or -1 if p is not in t;
rindex returns the last occurance instead. For example,

$ nickle
> String::index ("hello, world", "or")
8
> String::index ("hello, world", "goodbye")
-1
> String::rindex ("hello, world", "o")
8

Substr

string substr (string s, int i, int l)

Returns the substring of s which begins at index i and is l characters long. If l is
negative, returns the substring of that length which preceeds i instead. For example,

$ nickle
> String::substr ("hello, world", 8, 2)
"or"
> String::substr ("hello, world", 8, -4)

35

Chapter 4. Builtins

"o, w"
>

36

Chapter 5. Advanced topics

This chapter will discuss more advanced topics; these features make Nickle as power-
ful as it is. The semantics of copying and garbage collection, namespaces, exceptions,
threading and mutual exclusion, and continuations will all be covered.

Copy Semantics and Garbage Collection

Copy by value
In Nickle, assignment, argument passing, and definitions--in short everything in-
volving the values of variables--are all by-value. Nickle avoids the weird C-isms,
like being by-value except for arrays and strings. Everything is copied. Consider the
following example:

> int[*] foo = { 1, 2, 3 };
> int[*] bar = foo;
> foo[2] = 4;
> foo
[3] {1, 2, 4}

What will bar[2] be?

> bar
[3] {1, 2, 3}

Since assignment is by-value, bar has its own values--it is unchanged. Also consider
function arguments:

> string s = "hello, world";
> (void func(string s) { s = "foobar"; printf("%s\n",s); })(s);
foobar

Does s still have its original value, or "foobar"? Since the function was modifying a
copy--which was passed by-value--s will be unchanged.

> s
"hello, world"

What if you want to pass something by reference? Nickle has a reference type to
accomplish just that. (You could also use pointers, but references are The Right Way.
Anyway, pointers may eventually be removed from the language in preference to
references.) For example, to reimplement the example above using references:

> string s = "hello, world";
> (void func(&string s) { s = "foobar"; printf("%s\n",s); })(&s);
foobar
> s
"foobar"

37

Chapter 5. Advanced topics

Notice that s was changed; it was passed as a reference (&string). See the section on
Variables for a discussion of references.

Garbage collection
But if all those strings and arrays are copied entirely every time a function is called or
an assignment made, won’t there be a lot of unused, unreferenceable memory lying
around? No. Nickle is fully garbage-collected; when a value no longer has any names,
it is freed. This is invisible to the user/programmer, who need not worry about allo-
cation, deallocation, or any other aspects of their assignments and argument passing.

In short, everything is by-value, and Nickle takes care of allocation and deallocation.

Type checking and subtyping
Type checking in Nickle is a combination of compile-time and runtime checking. At
compile-time, Nickle will ensure that all assignments, argument passing, and other
copying situations are sane, for instance that no strings are being assigned to inte-
gers. It will let some errors through if it cannot be sure they are errors. For instance,
variables of type ’poly’ can hold any type; at compile-time, nothing is ruled out, but
this does not mean you can’t break typing at run-time.

At runtime, Nickle makes sure all assignments are actually valid. It does so by deter-
mining if one type is a subtype of the other, i.e. if the set of all values that can fit in it
also fit into the other. As a concrete example:

> int i = 1;
> rational r = i;
> i = r/3;
Unhandled exception "invalid_argument" at <stdin>:8

(1/3)
0
"Incompatible types in assignment"

The int can hold the integer value 1 without difficulty, because they are the same
type. The rational can accept the same value because integers are a subset of ratio-
nals. However, attempting to assign a rational (1/3) to the integer raises an exception.
This demonstrates that int is a subtype of rational; conversely, rational is the super-
type of int. A variable can take on a value from any of its subtypes, but not from its
supertypes--and if the two values do not share a sub/supertype relationship, they
will not get pass the compile-time checker.

A similar check occurs with structs. If one struct’s elements are a subset of another’s,
it may take that value. For example,

> typedef struct { int i; string s; } i_and_s;
> typedef struct { int i; } just_i;
> i_and_s is = { i=2, s="hello" };
> just_i i = is;
> just_i ji = { i=2 };
> is = ji;
Unhandled exception "invalid_argument" at <stdin>:17

{i = 2}
0
"Incompatible types in assignment"

38

Chapter 5. Advanced topics

Since just_i is a subtype of i_and_s (it has i but not s), the assignment to i from
is worked. However, attempting to assign to is from a just_i failed, because it did
not have an s to copy over.

Finally, in assignments of one function to another, the following must be the case:

• The arguments of the right-side function must be able to be assigned to those of
the left-side function. In other words, that on the left must accept a subset of the
arguments of that on the right.

• The return type of the left-side function must be able to be assigned to that of the
right-side function. In other words, its value should be usable anywhere that of the
one on the right could be used.

Nickle Namespaces
Namespaces collect related variable and function names and allow control over visi-
bility. A number of Nickle builtins are gathered into builtin namespaces that may be
used. The following builtin namespaces have sections in this tutorial:

• Math - Useful mathematical functions.

• File - File input/output with the ’file’ type.

• Thread - Concurrent processing.

• Semaphore and Mutex - Synchronization of threads.

• String - Useful functions for strings.

An example namespace might be declared like this:

namespace Example {

int blah = 1;
public int a = 0;

int function bar(int a) {
...

}

protected int function foo(int a) {
...

}

}

The keyword namespace is followed by the name of the namespace and a list of state-
ments that declare names in the namespace. The publication of those declarations,
e.g. public or protected defines how visible they will be outside the namespace.
The namespace itself may be preceeded by publication information, but this has no
bearing on the names within the namespace; it defines the visibility of the name of the
namespace. If the example above had been declared

protected namespace Example {
...

}

Then the names within Example would have the same visibility as always, but
Example itself would be protected in whatever namespace it belongs to. In this case,

39

Chapter 5. Advanced topics

it belongs to the top-level namespace, but namespaces can be nested within each
other, which makes the visibility of their own names important.

Extend

extend namespace name { statement-list }

Names may be added to a namespace after it is initially defined with the extend
command. The namespace name is reopened and the new statement-list is added
to the previous ones. For example,

extend namespace Example {
string[*] greeting = [2]{ "hello", "world" };

}

Adds greeting to the names already defined in Example.

Peering inside

namespace::name

import namespace

The :: operator refers to a name, which is in namespace, analogously to a structure
dereference. If name also refers to a namespace, its names too are visible this way.
Either protected or public names are visible in this way.

An import statement brings all the public names in namespace into scope, overshad-
owing conflicting names. Thereafter, those names may be used normally.

A variable is declared with one of three visibilities that defines how it is visible out-
side its namespace:

• "public" may be seen outside with :: or imported

• "protected" may be seen outside with :: but not imported

• if neither is specified, it may not be seen outside at all

Thus, in our example namespace Example:

• blah, bar, and greeting have no visibility specified and may only be used inside
Example.

• both a (which is public) and foo (which is protected) may be seen with ::.

• an import will only bring a into scope, as it is the only name that is public.

Nickle Exceptions
Nickle has first-class exceptions for error handling and quick escapes from recursive
algorithms. A number of exceptions are builtin to Nickle that it throws for various
errors, including:

• exception uninitialized_value(string msg) - Attempt to use an uninitialized value.

40

Chapter 5. Advanced topics

• exception invalid_argument(string msg,int arg,poly val) - The argth argument to
a builtin function had invalid value val.

• exception readonly_box(string msg,poly val) - Attempt to change the value of a
read-only quantity to val.

• exception invalid_array_bounds(string msg,poly a,poly i) - Attempt to access array
a at index i is out of bounds.

• exception divide_by_zero(string msg,real num,real den) - Attempt to divide num
by den when den is zero.

• exception invalid_struct_member(string msg,poly struct,string name) - Attempt to
refer to member name of the object struct, which does not exist.

• exception invalid_binop_values(string msg,poly arg1,poly arg2) - Attempt to eval-
uate a binary operator with arguments arg1 and arg2, where at least one of these
values is invalid.

• exception invalid_unop_values(string msg,poly arg) - Attempt to evaluate a unary
operator with invalid argument arg.

The following syntax may be used to declare a new exception:

exception name (type name, ...)

For example,

exception my_exception (string msg, int a, int b, int c);

Raise

raise name (value, ...)

Raises the named exception with the given arguments, e.g.

raise my_exception ("message", 0, 1, 2);

Execution is broken and my_exception travels up the stack until it is caught by a
try-catch block or it reaches the top level, where it prints an error message such as:

Unhandled exception "my_exception"
3
2
1
"message"

Try - catch

try statement

catch name (type name, ...) { statement-list }

try executes statement; if it raises an exception whose name matches that of a suc-
ceeding catch block, the arguments are placed in the names specified and the associ-
ated statement-list is executed. Control continues after the catch without contin-

41

Chapter 5. Advanced topics

uing up the stack; if further propagation is desired, statement-list should re-raise
the exception. Any number of catch blocks may be associated with a try statement.
For example:

exception my_exception(string msg,int a,int b,int c);

try raise my_exception("blah",1,2,3);
catch my_exception(string msg,int a,int b,int c) {

printf("%s: exception successfully caught (%d,%d,%d).\n",msg,a,b,c);
}

This example tries to execute a function that raises an exception; since that exception
matches the catch block, "blah", 1, 2, and 3 (the arguments) are put into msg, a, b, and c
and the statement list is executed, which in this case merely prints out the arguments
received and continues:

blah: exception successfully caught (1,2,3).

Twixt
Nickle does not provide a finally clause to a try-catch. In order to ensure the order
of some expressions, it provides twixt (See the section on Statements). For example,

exception my_exception(string msg, int a, int b, int c);

void foo(string msg, int a, int b, int c) {
twixt(printf("entering twixt..."); printf("leaving twixt.\n"))

raise my_exception(msg, a, b, c);
}

try foo("blah", 1, 2, 3);
catch my_exception(string msg,int a,int b,int c) {
printf("%s: exception successfully caught (%d,%d,%d).\n",msg,a,b,c);
}

Will produce the output:

entering twixt...leaving twixt.
blah: exception successfully caught (1,2,3).

Notice the order of the printed messages: twixt finished up before the exception was
handled by the catch. This is an elegant way to accomplish something that should
be done finally, in this case printing the message "leaving twixt" for demonstration.

42

Chapter 5. Advanced topics

Threads and Mutual Exclusion in Nickle

Basic threading
Threads provide concurrent processing of calculations. They are created with the
fork operator, which spawns a child thread to evaluate its argument and returns
it as a variable of the first-class type thread:

fork expr

The thread it returns is typically stored like this:

thread t = fork x!;

In the above example, fork immediately returns a thread, which is stored in t. That
thread will calculate the factorial of x in the background while the program continues;
when the calculation is finished it will block and wait for the parent thread (the one
that forked it) to kill, join, or otherwise recognize it.

Threads share names; if a thread changes the value of a variable, that change will occur
in the other threads as well. See Mutual exclusion below.

Thread functions
The builtin namespace Thread has functions for manipulating threads once they have
been forked.

Kill

int kill (thread t, ...)

Kills the threads it takes as arguments, regardless of whether or not they are finished,
and returns the number of threads successfully killed.

Join

poly join (thread t)

Waits for thread t to finish and returns the value of its expression. This is how to get
the value back out of a thread. Once joined, the thread will dissappear. For example,

thread t = fork 1000!;
something else...
printf("1000! = %d\n",Thread::join(t));

will execute ’something else’ while t runs, then wait for it to complete and print out
its value.

43

Chapter 5. Advanced topics

Current

thread current ()

Returns the currently running thread. Note that things such as kill(current())
and join(current()) are allowed, although the former merely exits and the latter
hangs forever; watch out for these errors.

Priorities

int set_priority (thread t, int i)

int get_priority (thread t)

Priorities determine how runtime is divided among threads; a thread with higher pri-
ority will always run before one with a lower priority. set_priority sets the priority
of t to i and returns the new priority. get_priority returns the priority of thread t.

Mutual exclusion
Consider the following situation:

import Thread;

void function para() {
printf("My next statement will be false.\n");

}

void function dox() {
printf("My previous statement was true.\n");

}

thread t = fork para();
thread s = fork dox();
join(t);
join(s);

When run, this prints out the less than clear message

MMyy nperxetv isotuast esmteantte mweinltl wbaes ftarlusee..

Why? Because the two threads are running simultaneously and take turns printing
out their messages; the result is that they are interleaved unreadably. The solution is
in the builtin namespace Mutex. A mutex is a first-class object which threads can use
to coordinate conflicting sections of code. Mutex defines the following functions:

New

mutex new ()

Creates a new mutex and returns it.

44

Chapter 5. Advanced topics

Acquire

bool acquire (mutex m)

acquire blocks until m is free, then locks it and returns true. At the top of the conflict-
ing code, each thread should acquire the mutex; since only one at a time can have it,
they will take turns executing. There is also a try_acquire that returns false imme-
diately rather than blocking if m is in use, but it is deprecated.

Release

void release (mutex m)

When the thread which owns a mutex leaves the conflicting section of code, it should
call release to free it for the next thread to acquire it.

Owner

mutex_owner owner (mutex m)

Returns the owner of m: either the thread which currently owns it or null if it is free.

An example
This is how the example above might work with mutual exclusion:

import Mutex;
import Thread;

mutex m = new();

void function para() {
acquire(m);
printf("My next statement will be false.\n");
release(m);

}

void function dox() {
acquire(m);
printf("My previous statement was true.\n");
release(m);

}

thread t = fork para();
thread s = fork dox();
join(t);

join(s);

This prints out, as expected,

My next statement will be false.
My previous statement was true.

45

Chapter 5. Advanced topics

Semaphores
Nickle also has counting semaphores, implemented in the Semaphore namespace.
Semaphores are similar to mutexes, but have some number of threads that may run
that isn’t necessarily one, as it is with mutexes. A semaphore with a count of one
behaves just like a mutex.

New
Semaphores are created with new, which is unlike Mutex::new in that it takes an
argument: the number of threads it will run simultaneously.

semaphore new (int c)

Wait and Signal
Just as Mutexes are acquired and released, threads wait on semaphores and
signal them when finished.

void wait (semaphore s)

void signal (semaphore s)

wait merely decrements the count of s, which starts with the initial value specified
by new. If the count, after the decrement, is positive, the thread continues to run; if
it is negative, it blocks until the count becomes positive again. This will occur when
one of the running threads calls signal, which increments the count of s and wakes
up another thread if any are waiting.

Negative initial counts
If new is called with a negative initial count, much of the meaning of the semaphore
is inverted. The count now refers to the number of threads that must wait until one
can execute; that is, the first c threads will block, and the c+1th will execute.

Why semaphores?
Semaphores are useful in situations where several threads can run simultaneously,
but not more than a certain number. They would be great, for instance, to work in a
licensing system, where each thread needs some command, but only a certain num-
ber may run at a given time.

Be careful
Semaphores, unlike mutexes, are very error-prone. They are not owned, in the sense
that mutexes are, and therefore do not check what threads are signalling or waiting
on them. Thus, situations like this are possible:

> import Semaphore;
> semaphore s = new(3);
> s
semaphore 1 (3);
> wait(s);
> s
semaphore 1 (2);
> wait(s);
> s

46

Chapter 5. Advanced topics

semaphore 1 (1);
> s
semaphore 1 (1)
> for(int i=0; i < 100; ++i)
+ signal(s);
> s
semaphore 1 (101)
> wait(s)
> s
semaphore 1 (100)
>

Therefore, code must be written carefully so that threads do not signal the semaphore
more than once, and only once they have waited on it.

Nickle Continuations
Arbitrary flow control is accomplished in Nickle with first-class continuations and
the functions setjmp and longjmp. These are similar to those in C, but without re-
strictions on the target.

poly setjmp (continuation *c, poly retval)

void lomgjmp (continuation c, poly retval)

Setjmp saves the state of the program, including program counter and names in
scope, in c and returns retval.

Longjmp returns retval from the setjmp that set c. There can be two distinctions from
this jump and the initial call to setjmp: the return value may differ, and variables that
have changed retain their new values.

Continuations are often used to implement control structures that do not exist in
the language, interpreters, and escaping from recursive algorithms. For example, the
following is a simple binary tree search that uses continuations to jump directly to
the top instead of returning up each branch once the result is found.

typedef tree;

typedef struct {
int key;
poly data;
&poly left, right;

} tree;

void function search (tree t, int i, &continuation c) {
if (i < t.key && ! is_void (t.left))

search (t.left, i, &c);
else if (i > t.key && ! is_void (t.right))

search (t.right, i, &c);
else if (i == t.key)

longjmp (c, t.data);
}

tree t = { key = 2, data = "blah", left = reference (<>), right = reference (<>) };

continuation c;
int i = 0;
{

poly p = setjmp (&c, <>);

47

Chapter 5. Advanced topics

++i;
printf ("I have been here %d times.\n", i);

if (is_void (p))
search (t, 2, &c);

else
printf ("value = %g\n", p);

}

This is a pretty normal binary tree search, but notice how it is run: a continuation is
set; if setjmp returns <> (which it will the first time), a value is searched for (this is
a pretty degenerate example with only one node). If an actual value is returned, it
must be from the longjmp in search, and the value is printed; a message is printed to
emphasize that setjmp returns twice. This optimizes the return from what can be a
very deeply nested search.

Notice that the last part of the code is inside curly braces. This is legal, of course,
but ordinarily not very useful. It is used in this case to get around a slight flaw in
Nickle: currently, each top-level command is executed in its own thread. Thus when
longjmp tries to return from the setjmp, that thread has already finished and the
program exits. By placing those statements in curly braces, they will all be executed
in the same thread and setjmp will still exist for longjmp to find.

This sort of escape from a nested search is also commonly done with exceptions,
raising one when the value is found and catching it at the top, passing the value as
an argument to the exception. Actually, that method is more common because of its
simplicity, but this example was done using continuations to demonstrate them.

48

	Nickle Tutorial
	Table of Contents
	Chapter 1. Nickle Tour
	Chapter 2. Nickle Basics
	Invocation
	Commands
	Expressions
	Quit
	Print
	Undefine
	Loading files
	Edit
	History

	Chapter 3. Language introduction
	Nickle Datatypes
	Primitive datatypes
	Numeric datatypes
	String datatype
	File datatype
	Concurrency and control flow datatypes
	Poly datatype
	Void datatype

	Composite datatypes
	Structs
	Unions
	Arrays
	Hashes
	Pointers
	References
	Functions

	Declarations
	Initializers
	Identifier scope
	Storage classes
	Auto variables
	Static variables
	Global variables

	Nickle Expressions
	Variable declarations
	Anonymous function declarations
	Binary operators
	Unary operators
	Constants
	Integer constants
	Rational constants
	String constants

	Variables
	Struct and union references
	Array references
	The fork operator
	Comma operator

	Control Statements in Nickle
	Simple statements
	Conditionals
	Twixt
	Switch
	Union switch
	Loops
	Flow control

	Nickle Functions

	Chapter 4. Builtins
	Input and Output
	Opening and closing files
	Flush
	End
	Characters and strings
	Unicode and characters vs. bytes
	Formatted I/O
	At the top level

	Math
	Numbers
	Operators
	The Math namespace
	Logarithms
	Trigonometric functions
	Constants

	Strings
	Operators
	Subscripting
	Concatenation

	String namespace
	Length
	Index
	Substr

	Chapter 5. Advanced topics
	Copy Semantics and Garbage Collection
	Copy by value
	Garbage collection
	Type checking and subtyping

	Nickle Namespaces
	Extend
	Peering inside

	Nickle Exceptions
	Raise
	Try catch
	Twixt

	Threads and Mutual Exclusion in Nickle
	Basic threading
	Thread functions
	Kill
	Join
	Current
	Priorities

	Mutual exclusion
	New
	Acquire
	Release
	Owner

	An example
	Semaphores
	New
	Wait and Signal
	Negative initial counts
	Why semaphores?
	Be careful

	Nickle Continuations

